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1 Introduction
From several points of view, the theory of
hyperstructures has been researched and ex-
tended to many fields of mathematics, com-
puter science and logic. In a classical alge-
braic structure the composition of two com-
ponents yields an element whereas in hy-
perstructures composition of two components
could be a non-empty set. From there on nu-
merousmathematicians started to work in this
field and composed numerous enquire about
articles and books on diverse hyperstructures.

A French mathematician F. Marty [1] pro-
posed the theory of hyperstructures at the 8th
Congress of Scandinavian Mathematicians in
1934. He gave out a few papers on hyper-
groups, using them in various settings: alge-
braic structures, rational fractions, and non-
commutative groups. A fair generalization of
classical algebraic structures is the algebraic
hyperstructure.

In 1953, the Romanian algebraist Mihail
Benado introduced the concept of hyperlat-
tice in the paper ”Asupra unei generǎlizari a
not̨iunii de structurǎ” [2]. Benado provides
two identical concepts of hyperlattice in this
work and some examples as well.

A hyperring is a ring generalization where
a hyperoperation is one of the operations.
Similarly, a hyperfield is a hyperstructure
that, in the above sense, generalizes the nor-
mal field definition. MarcKrasner introduced
the definition of hyperfield in [3], [4] in rela-
tion to his studies in valued fields.

The concept of a semihypergroup is a
generalization of a semigroup. As of late
Davvaz has composed a book [5] on semihy-
pergroups. Recent book on hyperstructures
[6] points out to their applications in cryptog-
raphy, codes, automata, probability, geome-
try, lattices, binary relations, graphs, and hy-
pergraphs.

The general aspects of the theory, the re-
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lations with groups, and complex applica-
tions of geometry were researched during the
1940s. Significant improvement has been
made since the 1970s, when the work field
grew. Numerous authors considered particu-
lar points of semihypergroups, for instance,
Corsini [7], Davvaz and Poursalavati [8].
Simplifable semihypergroups was investi-
gated by Guţan [9] and Leoreanu [10]. Some
results on congruences on semihypergroups
were presented by Davvaz [11]. Bonansinga
and Corsini [12] presented polygroups by
Comer which called Quazi- canonical hyper-
groups. Fasino and Freni [13] generalized the
definition of hypergroups of type U to semi-
hypergroups of type U . Hasankhani [14] pre-
sented the definition of an ideal in a left(right)
semihypergroup and the link between ideals
and greens relations were discussed. Ade-
quate conditions for a locally compact semi-
hypergroups are created by Onipchuk [15].

An inverse semipolygroup was intro-
duced by SutasineeWannusit and Poonchayar
Patthanangkoor [16]. They defined it as: Let
(S, ⋆) be a semipolygroup. It call an inverse
semipolygroup if there exists a unique unary
operation x → x−1 on S with the properties

(x−1)−1 = x, x ∈ x ⋆ x−1 ⋆ x,

x ∈ y ⋆ z implies y ∈ x ⋆ z−1 and

z ∈ y−1 ⋆ x ∀x, y, z ∈ S.

And some properties were presented.
In this paper we define an inverse semi-

hypergroup by generalizing the definition of
an inverse semigroup as it is defined as: Let
(S, .) be a semigroup. We say that x−1 is the
inverse of x if and only if

xx−1x = x and x−1 = x−1xx−1.

If for everyrelement x ∈ S there is a unique
inverse of x, then we call (S, .) an inverse
semigroup.

In this paper, we try, based on the pa-
per of Lawson on inverse semigroups [17],
to define inverse semihypergroups and prove
some basic properties of inverse semihyper-
groups in analogy with those of inverse semi-
groups. We include several examples and
counter-examples that demonstrate the com-
plexity of the theory we are creating. We’ll
see that inverse semigroups and inverse semi-
hypergroups are equivalent in many respects,
but they are very different in many other re-
spects.

2 Basic Definition
Definition 2.1. Let S be a non-empty set and
let ⋆ : S × S → P (S)∗ be a mapping de-
fined by ⋆(x, y) = x ⋆ y. We call (S, ⋆) a
hypergroupoid. If T1, T2 are two non-empty
subsets of S and x ∈ S then

T1 ⋆ T2 =
∪

t1∈T1

t2∈T2

t1 ⋆ t2,

T1 ⋆ x = T1 ⋆ {x}, x ⋆ T2 = {x} ⋆ T2

Definition 2.2. We call (S, ⋆) a semihyper-
group if

(x ⋆ y) ⋆ z = x ⋆ (y ⋆ z) ∀ x, y, z ∈ S,

which implies that∪
u∈x⋆y

u ⋆ z =
∪

v∈y⋆z
x ⋆ v.

Definition 2.3. Let (S, ⋆) be a semihyper-
group and A be a non-empty subset of S. We
call A a subsemihypergroup if ∀ x, y ∈ A :
x ⋆ y ⊆ A.

Example 2.4. Let S = {a, b, c, d} and let the
operation ⋆ defined by the following hyperop-
eration table:
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⋆ a b c d
a {ia,c,di} d {ia,c,di} d
b {ia,c,di} d c d
c {ia,c,di} {ib,di} {ia,c,di} d
d {ia,c,di} d {ia,c,di} d

Table 1: Hyperoperation on a set

Then (S, ⋆) is a semihypergroup.

Definition 2.5. Let a be an element in a semi-
hypergroup S. We say that a is regular if and
only if there exists b ∈ S such that a ∈ a⋆b⋆a.
A semihypergroup S is said to be regular if
∀a ∈ S is regular.

The semihypergroup S in Table 1 is regu-
lar where a ∈ a⋆a⋆a, b ∈ b⋆a⋆b, c ∈ c⋆d⋆c
and d ∈ d ⋆ c ⋆ d.

Definition 2.6. An idempotent in a semihy-
pergroup S is an element e such that e ∈ e⋆e.
A nonempty set A of S is called idempotent
subset if A ⊆ A ⋆ A.

Definition 2.7. Let S be a regular semihy-
pergroup. If the set of idempotents E of S is
a subsemihypergroup then we call S an or-
thodox semihypergroup.

Definition 2.8. Let x be an element of a semi-
hypergroup S. We say that x−1 is an inverse
of x if and only if x ∈ x ⋆ x−1 ⋆ x and
x−1 ∈ x−1 ⋆ x ⋆ x−1.

Definition 2.9. A semihypergroup S is said
to be inverse if for each x ∈ S there exists a
unique inverse x−1 in S.

Thus inverse semihypergroups are regular.

Example 2.10. Let S = {1, 2, 3} be a semi-
hypergroup defined by the following hyperop-
eration table:

⋆ 1 2 3
1 {2,3} 1 1
2 1 {2,3} 2
3 1 2 3

Table 2: Hyperoperation on a semihyper-
group

Then (S, ⋆) is an inverse semihypergroup
as each element of S has a unique inverse as
it is shown in Table 2,

@1−1 = 1,@2−1 = 2,@3−1 = 3.

Definition 2.11. LetiLibe a nonempty
set with a binary hyperoperation ⊗
oniLisatisfying the following conditions,
∀x, y, z ∈ L,

• Idempotent;ixi ∈ ixi⊗ ix.

• Commutative;ixi⊗ iyi = iyi⊗ ix.i

• Associative;i(xi ⊗ iy)i ⊗ izi = ixi ⊗
i(yi⊗ iz).

Then (L,⊗) is called a hypersemilattice.

Example 2.12. Let L = {a, b, c, d} be a set
defined by the following hyperoperation ta-
ble:

⊗ ia i b ic id
ia ia ia iai ia
ibi ia {ia,bi} i a {ia,bi}
ic ia ia ic ic
id ia {ia,bi} ic {ic,di}

Table 3: Hyperoperationion a set

Then L with the operation ⊗ in Table 3 is
a hypersemilattice.
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3 Main Results
Lemma 3.1. Let e be an idempotent of an
orthodox semihypergroup S. Then, every in-
verse of e is an idempotent.
Proof. Let x be an inverse of e, thenie ∈ iei⋆
ixi ⋆ ie andixi ∈ ixi ⋆ iei ⋆ ix. Thus

iei ⋆ ixi ∈ iei ⋆ ixi ⋆ iei ⋆ ixi

and ixi ⋆ iei ∈ ixi ⋆ iei ⋆ ixi ⋆ ie and thus
ie ⋆ xi and ix ⋆ ei are idempotents. Then we
have

xi ∈ ixi ⋆ iei ⋆ ix

i ⊆ ixi ⋆ ie ⋆ ie ⋆ ix

i ⊆ iEi ⋆ iE

i ⊆ E

Therefore x is an idempotent.

Theorem 3.2. LetiSibe an orthodox semihy-
pergroup. Letie, f ∈ Eisuch that

iei ∈ iei ⋆ ifi ⋆ iei and if ∈ fi ⋆ iei ⋆ if.i

Then for any a, b ∈ S, any inverse x ofiai ⋆
iei ⋆ ibiis also an inverse ofiai ⋆ ifi ⋆ ibi.
Proof. By the assumption, we have

xi ∈ ixi ⋆ (ai ⋆ iei ⋆ ib) ⋆ ix

and

ai⋆iei⋆ibi ∈ i(ai⋆iei⋆ib)⋆ixi⋆i(ai⋆iei⋆ib).

Letiuiandivi be the inverses ofiaiandibi re-
spectively and thus

ai ∈ ia ⋆ iui ⋆ ia and ui ∈ iui ⋆ iai ⋆ iu.

And

bi ∈ ibi ⋆ ivi ⋆ ib and vi ∈ ivi ⋆ ibi ⋆ iv.

Therefore,
ai ⋆ iei ⋆ ibi ⊆ i(ai ⋆ iei ⋆ ib)i ⋆ ix ⋆ i(ai ⋆ iei ⋆ ib)

i ⊆ iai ⋆ iei ⋆ i(bi ⋆ ivi ⋆ ib)i ⋆ ix

i ⋆ i(ai ⋆ iu ⋆ ia)i ⋆ iei ⋆ ib

and thus

ui ⋆ iai ⋆ iei ⋆ ibi ⋆ ivi ⊆ iui ⋆ iai ⋆ iei ⋆ i(bi ⋆ ivi ⋆ ib)i ⋆ ixi

⋆ i(ai ⋆ iui ⋆ ia)i ⋆ iei ⋆ ibi ⋆ iv

i = i(ui ⋆ iai ⋆ iei ⋆ ibi ⋆ iv)i ⋆ i(bi

⋆ ixi ⋆ ia)

i ⋆ i(ui ⋆ iai ⋆ iei ⋆ ibi ⋆ iv).

And we have

bi ⋆ ixi ⋆ iai ⊆ ibi ⋆ i(xi ⋆ iai ⋆ iei ⋆ ibi ⋆ ix)i ⋆ ia

i ⊆ ibi ⋆ ixi ⋆ i(ai ⋆ iui ⋆ ia)i ⋆ iei

⋆ i(bi ⋆ ivi ⋆ ib)i ⋆ ixi ⋆ ia

= i(bi ⋆ ixi ⋆ ia) ⋆ i(ui ⋆ iai ⋆ iei ⋆ ibi ⋆ iv)i

⋆ i(bi ⋆ ixi ⋆ ia).

Which implies thatrb ⋆ x ⋆ arandru ⋆ a ⋆ e ⋆
b ⋆ vrare inverses. Since thatru ⋆ a, e, b ⋆ v ∈
Erthenru ⋆ a ⋆ e ⋆ b ⋆ v ∈ Er. And because
thatru⋆a⋆e⋆b⋆vris the inverse ofrb⋆x⋆arand
it is idempotent thenrb⋆x⋆aris an idempotent
by Lemma 3.1, which means thatrb ⋆ x ⋆ aris
an inverse of u ⋆ a ⋆ f ⋆ b ⋆ v.

(Generally, E ∼=
∑

Eλ : λ ∈ Γ, Γ is a
hypersemilattice and eachEλ is a rectangular
band). Since e ∈ e ⋆ f ⋆ e and f ∈ f ⋆ e ⋆ f ,
there exists Eδ such that e, f ∈ Eδ. Thus for
any t ∈ Eα and g ∈ Eβ , we have t ⋆ e ⋆ g,
t ⋆ f ⋆ g ∈ Eαδβ .

Therefore any idempotent τ which is an
inverse of ξ⋆e⋆µ is also an inverse of ξ⋆f ⋆µ.
where ξ and µ are idempotents [18]. Hence
we have

bi ⋆ ixi ⋆ iai ⊆ i(bi ⋆ ixi ⋆ ia)i

⋆ i(ui ⋆ iai ⋆ ifi ⋆ ibi ⋆ iv)i

⋆ i(bi ⋆ ixi ⋆ ia)

ui ⋆ iai ⋆ if ⋆ ibi ⋆ ivi ⊆ i(ui ⋆ iai ⋆ ifi ⋆ ibi ⋆ iv)i

⋆ i(bi ⋆ ixi ⋆ ia)i

⋆ i(ui ⋆ iai ⋆ ifi ⋆ ibi ⋆ iv).

And

xi ∈ ixi ⋆ iai ⋆ ifi ⋆ ibi ⋆ ix
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also

ai ⋆ ifi ⋆ ibi ⊆ iai ⋆ ifi ⋆ ibi ⋆ ixi ⋆ iai ⋆ ifi ⋆ ib

i ⊆ iai ⋆ ifi ⋆ ibi ⋆ ixi ⋆ iai ⋆ ifi ⋆ ibi

⋆ ixi ⋆ iai ⋆ ifi ⋆ ib

and thus

xi ⋆ iai ⋆ ifi ⋆ ibi ⋆ ixi ⊆ ixi ⋆ ia ⋆ ifi ⋆ ibi

⋆ ixi ⋆ iai ⋆ ifi

⋆ ib ⋆ ixi ⋆ iai

⋆ ifi ⋆ ibi ⋆ ix

which implies thatiai ⋆ ifi ⋆ ibiandixi ⋆ iai ⋆
ifi ⋆ ibi ⋆ ixiare inverses. Similarly

ai ⋆ iei ⋆ ib ⊆ iai ⋆ iei ⋆ ibi ⋆ ixi ⋆ ia

⋆ ifi ⋆ ibi ⋆ ixi ⋆ iai ⋆ iei ⋆ ib

and then

xi ⋆ iai ⋆ iei ⋆ ibi ⋆ ix ⊆ ixi ⋆ iai ⋆ iei

⋆ ibi ⋆ ixi ⋆ iai

⋆ ifi ⋆ ibi ⋆ ixi

⋆ iai ⋆ iei ⋆ ibi ⋆ ix.

Since thatix is the inverse ofiai ⋆ iei ⋆
ibithenix is the inverse ofiai ⋆ ifi ⋆ ib.

Proposition 3.3. Let S be a semihypergroup.
Ifis ∈ Siis an idempotent thenis−1 = s.

Proof. Sinceis is an idempotent then s ∈ isi⋆
isi.Thus

isi ⋆ isi ⊆ is ⋆ isi ⋆ isii

and then

isi ∈ is ⋆ isi ⊆ isi ⋆ isi ⋆ is.i

Therefore, s−1 = s.

Proposition 3.4. IfiS is an inverse semihy-
pergroup. Then ∀isi ∈ S : si ⋆ is−1iis an
idempotent.

Proof. SinceiS is an inverse semihypergroup
then

rsr ∈ rsr⋆rs−1r⋆rs and s−1 ∈ s−1r⋆rsr⋆rs−1r

and then

sr ⋆ rs−1r ⊆ r(sr ⋆ rs−1r ⋆ rs)r ⋆ rs−1

r = r(sr ⋆ rs−1)r ⋆ r(sr ⋆ rs−1).

Let xr ∈ rsr ⋆ rs−1 which implies that

xr ∈ r(sr ⋆ rs−1)r ⋆ r(sr ⋆ rs−1)

and thus

sr ⋆ rs−1r ⊆ r(sr ⋆ rs−1)r ⋆ r(sr ⋆ rs−1).

Proposition 3.5. IfiSiis an inverse semihy-
pergroup and a, b are idempotents iniSithen

bi ⋆ i(ai ⋆ ib)−1i ⋆ ia

is an idempotent inverse ofiai ⋆ ibi.

Proof. Letia, bibe idempotents. Letisibe an
inverse ofiai ⋆ ibiWhich means si = i(ai ⋆
ib)−1. Thus,

si ∈ isi ⋆ i(ai ⋆ ib)i ⋆ is, (1)

and

ai ⋆ ibi ⊆ i(ai ⋆ ib)i ⋆ isi ⋆ i(ai ⋆ ib). (2)

multiplying (1) byibifrom the left
andiaifrom the right , we have

bi ⋆ isi ⋆ iaii ⊆ ibi ⋆ i(si ⋆ iai ⋆ ibi) ⋆ isi ⋆ ia

i ⊆ ibi ⋆ isi ⋆ i(ai ⋆ ia)i ⋆ i(bi ⋆ ib)i

⋆ isi ⋆ ia

i = i(bi ⋆ isi ⋆ ia)i ⋆ i(ai ⋆ ib)i

⋆ i(bi ⋆ isi ⋆ ia)
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From (2) we have,

ar ⋆ rbr ⊆ r(ar ⋆ rb)r ⋆ rsr ⋆ r(ar ⋆ rb)

r ⊆ rar ⋆ r(br ⋆ rb)r ⋆ rs

r ⋆ r(ar ⋆ ra)r ⋆ rb

r = r(ar ⋆ rb)r ⋆ r(br ⋆ rsr ⋆ ra)r

⋆ r(ar ⋆ rb).

Therefore, bi ⋆ i(ai ⋆ ib)−1i ⋆ ia is an idem-
potent inverse ofiai ⋆ ibi.

Theorem 3.6. IfiSiis an inverse semihyper-
group then its idempotents commute.

Proof. Letia, bibe idempotents. We prove
that ai ⋆ ibi = ibi ⋆ ia. Hence

(ai ⋆ ib)−1i = ibi ⋆ i(ai ⋆ ib)−1i ⋆ ia

by Proposition 3.5 and uniqueness of in-
verses. Thusi(a⋆b)−1iis idempotent and thus

(ai ⋆ ib)−1i = iai ⋆ ib

as every idempotent is it self inverse (Proposi-
tion 3.3) and the uniqueness. Similarly, bi⋆ia
is an idempotent. Therefore,

br ⋆ rar ⊆ rbr ⋆ rar ⋆ rbr ⋆ ra

r ⊆ rbr ⋆ rar ⋆ rar ⋆ rbr ⋆ ibi ⋆ ia

r = i(br ⋆ ra)r ⋆ r(ar ⋆ rb)r ⋆ r(br ⋆ ra).

Analogously,

al ⋆ lbl ⊆ lal ⋆ lbl ⋆ lal ⋆ b

l ⊆ lal ⋆ lbl ⋆ lbl ⋆ lal ⋆ lal ⋆ lb

l = l(al ⋆ lb)l ⋆ l(bl ⋆ la)l ⋆ l(al ⋆ lb).

Thusla ⋆ blandlb ⋆ al are inverses and then
al ⋆ lbl = lbl ⋆ la.

Lemma 3.7. For any two elementslx, ylin an
inverse semihypergroupS : (x⋆y)−1 = y−1⋆
x−1.

Proof. Since

xi ∈ ixi ⋆ ix−1i ⋆ ix, yi ∈ iyi ⋆ iy−1i ⋆ iy

and

x−1i ∈ ix−1i⋆ixi⋆ix−1, y−1i ∈ iy−1i⋆iyi⋆iy−1.

Then we have

x ⋆ y ⊆ (x ⋆ x−1 ⋆ x) ⋆ (y ⋆ y−1 ⋆ y)

= x ⋆ (x−1 ⋆ x) ⋆ (y ⋆ y−1) ⋆ y

= x ⋆ (y ⋆ y−1) ⋆ (x−1 ⋆ x) ⋆ y

(since idempotents commute)
= (x ⋆ y) ⋆ (y−1 ⋆ x−1) ⋆ (x ⋆ y).

Similarly,

y−1 ⋆ x−1 ⊆ (y−1 ⋆ y ⋆ y−1) ⋆ (x−1 ⋆ x ⋆ x−1)

= y−1 ⋆ (y ⋆ y−1) ⋆ (x−1 ⋆ x) ⋆ x−1

= y−1 ⋆ (x−1 ⋆ x) ⋆ (y ⋆ y−1) ⋆ x−1

(since idempotents commute)
= (y−1 ⋆ x−1) ⋆ (x ⋆ y) ⋆ (y−1 ⋆ x−1)

Which implies thatr(x⋆yr)−1 = ry−1 ⋆x−1.

Proposition 3.8. All hypergroups are inverse
semihypergroups and an inverse semihyper-
group is a hypergroup if and only if it has a
unique idempotent.

Proof. It islobvious thatlall hypergroupslare
inverse semihypergroups. Now we showlthe
other direction. LetlSlbe an inverse semihy-
pergroup with a unique idempotentle. Then
by Proposition 3.4 we have,

s ⋆ s−1 = e = s−1 ⋆ s.

Then
e ⋆ s = (s ⋆ s−1) ⋆ s.

And aslslandls−1lare inverses then

s ∈ s ⋆ s−1 ⋆ s = e ⋆ s,
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which implies thatls ∈ e⋆sland similarlyls ∈
s⋆e. Letlx ∈ e⋆s, then we have lx ∈ s⋆s−1⋆
s, and thusle ⋆ s ⊆ s ⋆ e and similarly we can
provels⋆e ⊆ e⋆s .Therefore e⋆s = s⋆e.

Lemma 3.9. LetlSlbe an inverse semihyper-
group then,

• For each idempotentie and elementis
there is an idempotentifisuch thatie ⋆
s ⊆ s ⋆ f .

• For each idempotentie and elementis
there is an idempotentifisuch thatis ⋆
e ⊆ f ⋆ s.

Proof. (1) We may putif = s−1i ⋆ ei ⋆ is.
Notice thatifiis an idempotent because
s ∈ si⋆is−1i⋆is and s−1 ∈ s−1i⋆isi⋆is−1.
Then we have,

f = s−1 ⋆ e ⋆ s

⊆ s−1 ⋆ e ⋆ s ⋆ s−1 ⋆ s

(since s ∈ s ⋆ s−1 ⋆ s)

⊆ s−1 ⋆ e ⋆ e ⋆ s ⋆ s−1 ⋆ s

(sinceie isian iidempotent)
⊆ (s−1 ⋆ e ⋆ s) ⋆ (s−1 ⋆ e ⋆ s)

(since e and s ⋆ s−1commute)
= f ⋆ f.

Therefore,ifiis idempotent. Then

e ⋆ s ⊆ e ⋆ (s ⋆ s−1) ⋆ s

= (s ⋆ s−1) ⋆ e ⋆ s

( since e and s ⋆ s−1commute)
= s ⋆ (s−1 ⋆ e ⋆ s)

= s ⋆ f.

(2) is proved analogously.

Lemma 3.10. LetiSibe an inverse semihy-
pergroup and letia, bi ∈ S then;

• If there exists an idempotentifisuch
thatia = b ⋆ fithenia ⊆ a ⋆ a−1 ⋆ b.

• If there exists an idempotentieisuch
thatia = e ⋆ bithenia ⊆ b ⋆ a−1 ⋆ a.

Proof. We show (1). Let a = b ⋆ f
wherecfcis an idempotent. Then

a = bl ⋆ f

⊆ (bl ⋆ lb−1l ⋆ lb)l ⋆ lf

= bl ⋆ lf ⋆ l(b−1l ⋆ lb)

(sincecidempotentsccommute)
⊆ bl ⋆ lfl ⋆ lfl ⋆ lb−1l ⋆ lb

= bl ⋆ lfl ⋆ lf−1l ⋆ lb−1l ⋆ lb

(sincelevery idemotentciscitcselfcinverse)
= (bl ⋆ lf)l ⋆ l(bl ⋆ lf)−1l ⋆ lb

(by Lemma 3.7)
= a ⋆ a−1 ⋆ b.

We show similarly (2). Letsa = e ⋆ bs. Then

a = el ⋆ lb

⊆ el ⋆ l(bl ⋆ lb−1l ⋆ lb)

= (bl ⋆ lb−1)l ⋆ lel ⋆ lb

(sincecidempotentsccommute)
⊆ (bl ⋆ lb−1)l ⋆ lel ⋆ lel ⋆ lb

= (bl ⋆ lb−1)l ⋆ le−1l ⋆ lel ⋆ lb

(sinceceverycidemotentciscitcselfcinverse)
= bl ⋆ l(el ⋆ lb)−1l ⋆ l(el ⋆ lb)

(by Lemma 3.7)
= bl ⋆ la−1l ⋆ la.

Definition 3.11. Letr(S, ◦)randr(T, ⋆)rbe
two semihypersemigroups. A map ϕ : S →
Tris called a homomorphism if

∀x, yr ∈ rS : ϕ(xr ◦ry)r ⊆ rϕ(x)r ⋆rϕ(y).
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We call ϕ a strong homomorphism if

∀x, yr ∈ rS : ϕ(xr ◦ry)r = rϕ(x)r ⋆rϕ(y).

We callrϕrisomorphism ifrϕris one-to-one
onto strong homomorphism and denoted by
rS ∼= T .
Example 3.12. LetrS = {a, b, c}rand T =
{1, 2, 3} be two semihypergroups with the fol-
lowing hyperoperation tables:

◦ a b c
i a i a {a,b,c} ci
ib {a,b,c} ib {a,b,c}
i c ic {a,b,c} i c

Table 4: Hyperoperation ◦ on S

⋆ 1 2 3
1 {1,3} {1,2,3} 3
2 {1,2,3} 2 {1,2,3}
3 3 {1,2,3} 3

Table 5: Hyperoperation ⋆ on T

Letiϕ : S → Tiibe a mapping defined
byiϕ(a) = 1, ϕ(b) = 2, ϕ(c) = 3. Thusiϕiis
a homomorphism but not a strong homomor-
phism (Table 4 and (Table 5).
Lemma 3.13. Let ϕ : S → T be a homomor-
phism between two inverse semihypergroups
(S, ◦) and (T, ⋆). Then

• ϕ(s−1) = ϕ(s)−1 ∀s ∈ S.

• Ifieiis an idempotent theniϕ(e)iis an
idempotent.

• Ifiϕiis a strong homomorphism and
iϕ(s)iis an idempotent then there is an
idempotent ieisuch thatiϕ(s) ⊆ ϕ(e).

• Imϕ is an inverse subsemihypergroup of
T.

• IfiUiis an inverse subsemihypergroup of
iT itheniϕ−1(U)iis an inverse subsemi-
hypergroup of S.

Proof. (1) Since s ∈ s ◦ s−1 ◦ s and s−1 ∈
s−1 ◦ s ◦ s−1. Then

ϕ(s)i ⊆ iϕ(si ◦ is−1i ◦ is)
i ⊆ iϕ(s)i ⋆ iϕ(s−1)i ⋆ iϕ(s),

and

ϕ(s)−1i ⊆ iϕ(s−1i ◦ isi ◦ is−1)

i ⊆ iϕ(s−1)i ⋆ iϕ(s)i ⋆ iϕ(s−1).

Thusiϕ(s)−1 = iϕ(s−1).
(2) Sinceiei ∈ iei ◦ ieitheniϕ(e)i ⊆ iϕ(ei ◦
ie)i ⊆ iϕ(e)i ⋆ iϕ(e).
(3) Since ϕ(s) is an idempotent then

iϕ(s)i ⊆ iϕ(s)i ⋆ iϕ(s)i

= iϕ(s)−1i ⋆ iϕ(s)i (from Proposition 3.3)
= iϕ(s−1)i ⋆ iϕ(s)

= iϕ(s−1i ◦ is)

(4) Sinceiϕiis a semihypergroup homomor-
phism, Imiϕiis a subsemihypergroup ofiT .
By (1), Imiϕiis closed under inverses.
(5) Obvious.

4 conclusion
Inverse semihypergroup is a new direction in
the field of hyperstructures. The fine general-
ization of hypergroups is further organized by
inverse semihypergroups. Although several
hypergroup principle theorems have been ef-
fectively exported to inverse semihypergroup
theory, there is little evidence of the contribu-
tion of hypersemillatice theory.

The study presented in this paper is an
initial step in the theoretical investigation
of inverse semihypergroups. We will be
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studying in the future the ability of describ-
ing inverse semihypergroup in term of their
hypersemilattice of idempotents. Also an
orthodox inverse semihypergroup is a rich
new area of research. A simple question can
be asked, can we generalize the theorems
of band semigroups and rectangular band
semigroups, to band semihypergroups and
rectangular band semihypergroups?
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