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Abstract: The concept of inverse semihypergroup is a generalization of the concept of inverse
semigroup. In this paper we defined an orthodox semihypergroup S as it is a regular semihyper-
group in which the set of idempotents of S forms a subsemihypergroup. We also presented a new
definition of inverse semihypergroup S as each element x € S has a unique inverse s~ ! in S,
and we provided many results related to inverse semihypergroups, regular semihypergroups and
orthodox semihypergroups.
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1 Introduction In 1953, the Romanian algebraist Mihail
Benado introduced the concept of hyperlat-
tice in the paper ”Asupra unei generalizari a
notiunii de structura” [2]. Benado provides
two identical concepts of hyperlattice in this
work and some examples as well.

A hyperring is a ring generalization where
a hyperoperation is one of the operations.
Similarly, a hyperfield is a hyperstructure

From several points of view, the theory of
hyperstructures has been researched and ex-
tended to many fields of mathematics, com-
puter science and logic. In a classical alge-
braic structure the composition of two com-
ponents yields an element whereas in hy-
perstructures composition of two components

could be a non-empty set. From there on nu- that, in the above sense, generalizes the nor-
merous mathematicians started to work in this mal field definition. Marc Krasner introduced

ﬁe!d and composed numerous enquire about the definition of hyperfield in [3], [4] in rela-
articles and books on diverse hyperstructures. tion to his studies in valued fields.

A French mathematician F. Marty []l]] pro- The concept of a semihypergroup is a
posed the theory of hyperstructures at the 8th generalization of a semigroup. As of late
Congress of Scandinavian Mathematicians in Davvaz has composed a book [5] on semihy-
1934. He gave out a few papers on hyper- pergroups. Recent book on hyperstructures
groups, using them in various settings: alge- [6] points out to their applications in cryptog-
braic structures, rational fractions, and non- raphy, codes, automata, probability, geome-
commutative groups. A fair generalization of try, lattices, binary relations, graphs, and hy-
classical algebraic structures is the algebraic pergraphs.
hyperstructure. The general aspects of the theory, the re-
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lations with groups, and complex applica-
tions of geometry were researched during the
1940s. Significant improvement has been
made since the 1970s, when the work field
grew. Numerous authors considered particu-
lar points of semihypergroups, for instance,
Corsini [[7]], Davvaz and Poursalavati [§].
Simplifable semihypergroups was investi-
gated by Gutan [9] and Leoreanu [[10]. Some
results on congruences on semihypergroups
were presented by Davvaz [|11]. Bonansinga
and Corsini [|12] presented polygroups by
Comer which called Quazi- canonical hyper-
groups. Fasino and Freni [[13] generalized the
definition of hypergroups of type U to semi-
hypergroups of type U. Hasankhani [|14] pre-
sented the definition of an ideal in a left(right)
semihypergroup and the link between ideals
and greens relations were discussed. Ade-
quate conditions for a locally compact semi-
hypergroups are created by Onipchuk []15].
An inverse semipolygroup was intro-
duced by Sutasinee Wannusit and Poonchayar
Patthanangkoor [[16]. They defined it as: Let
(S, %) be a semipolygroup. It call an inverse
semipolygroup if there exists a unique unary
operation x — x ! on S with the properties

(e Y =z, zcaxaxua,

1

T € y*xz impliesy € x x 2z~ ~ and

1

z€ey “KkxVr,y,z€S.

And some properties were presented.

In this paper we define an inverse semi-
hypergroup by generalizing the definition of
an inverse semigroup as it is defined as: Let
(S, .) be a semigroup. We say that 2! is the
inverse of x if and only if

1 1 1 1

xr x=x and xT =ax “xx .
If for every element z € S there is a unique
inverse of z, then we call (S,.) an inverse

semigroup.
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In this paper, we try, based on the pa-
per of Lawson on inverse semigroups [[17],
to define inverse semihypergroups and prove
some basic properties of inverse semihyper-
groups in analogy with those of inverse semi-
groups. We include several examples and
counter-examples that demonstrate the com-
plexity of the theory we are creating. We’ll
see that inverse semigroups and inverse semi-
hypergroups are equivalent in many respects,
but they are very different in many other re-
spects.

2 Basic Definition

Definition 2.1. Let S be a non-empty set and
let x : S xS — P(S)" be a mapping de-
fined by x(x,y) = x xy. We call (S,*) a
hypergroupoid. If T, T» are two non-empty
subsets of S and x € S then

Tl*l':Tl*{a}}, w*TQ :{{L'}*TQ

Definition 2.2. We call (S,*) a semihyper-
group if

(xxy)xz=xx(y*xz)Va,y,z €S,

which implies that

U usz= | oo

UET*Y VEY*Z

Definition 2.3. Let (S,x) be a semihyper-
group and A be a non-empty subset of S. We
call A a subsemihypergroup ifV x,y € A :
xxy C A

Example 2.4. Let S = {a, b, c,d} and let the
operation x defined by the following hyperop-
eration table:
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* a b c d
a|{acd} d {acd} | d
b| {acd} d c d
c|{acd} | {bd} | {acd} |d
d| {acd} d {acd} | d

Table 1: Hyperoperation on a set

Then (S, x) is a semihypergroup.

Definition 2.5. Let a be an element in a semi-

hypergroup S. We say that a is regular if and
onlyifthere exists b € S suchthata € axbxa.

A semihypergroup S is said to be regular if
Va € S is regular.

The semihypergroup S in Table [If is regu-
lar where a € axaxa, b € bxaxb, ¢ € ckdxc
andd € dxcxd.

Definition 2.6. An idempotent in a semihy-
pergroup S is an element e such that e € exe.
A nonempty set A of S is called idempotent
subsetif A C Ax A.

Definition 2.7. Let S be a regular semihy-
pergroup. If the set of idempotents E of S is
a subsemihypergroup then we call S an or-
thodox semihypergroup.

Definition 2.8. Let x be an element of a semi-
hypergroup S. We say that x~ is an inverse
of v if and only if v € x x v~ % x and
e lerstxrxal

Definition 2.9. A semihypergroup S is said
to be inverse if for each x € S there exists a
unique inverse ™ Vin S.

Thus inverse semihypergroups are regular.
Example 2.10. Let S = {1,2,3} be a semi-

hypergroup defined by the following hyperop-
eration table:
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* 1 3
1] {2,3} 1 1
2 1 {2,3} | 2
3 1 2 3

Table 2: Hyperoperation on a semihyper-
group

Then (S, x) is an inverse semihypergroup
as each element of S has a unique inverse as
it is shown in Table [

17t=1, 27t=2, 371=3.

Definition 2.11. Let L be a nonempty
set with a binary hyperoperation &
on L satisfying the following conditions,
Vx,y,z € L,

* Ildempotent; x € * ® =x.
o Commutative; x @ y = y Q@ x.

* Associative; (x @ y) ® z = = ®
(v © 2).

Then (L, ®) is called a hypersemilattice.

Example 2.12. Let L = {a,b, c,d} be a set
defined by the following hyperoperation ta-
ble:

® | a b c d
a| a a a a
b |a|{ab}| a|{ab}
c| a a c c
d| aj{ab}| c| {cd}

Table 3: Hyperoperation on a set

Then L with the operation Q in Table |3 is
a hypersemilattice.
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3 Main Results

Lemma 3.1. Let e be an idempotent of an
orthodox semihypergroup S. Then, every in-
verse of e is an idempotent.

Proof. Letx be aninverse of e, then ¢ € e %
x « eandz € x * e x x. Thus

€ X T € e %X XT % e xT

and z x e € = % e x ¥ * e and thus
exz and x *e are idempotents. Then we
have

r € r e x I
T % ex ex T
E x F

E

N 1N 1N

Therefore x is an idempotent. U

Theorem 3.2. Let S be an orthodox semihy-
pergroup. Let e, f € E such that

e €e*x fxe and fef xex f

Then for any a,b € S, any inverse x of a *
e * bisalsoaninverseofa x f x b.

Proof. By the assumption, we have
x € x k(axexb)*zx
and
axexb € (axexbxx*(a*exb).

Let v and v be the inverses of @ and b re-
spectively and thus

a € ax u*xaand u € u x a *x u.
And
bebrxvxbadv € v x b x v.
Therefore,

axe*xb (a xexb) xxx (a xe*b)

c
Caxex(bxv*b xuzx

* (@ x ux a) xexb

513
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and thus

uxaxexbxv Cuxaxex(b*xvxbd xza

* (axuxa) xe*bxwv
= (u*xaxexb*uv) x (b
* T x a)

* (u*xaxexbx*v).
And we have

bx(xxaxexbxa) *xa
(@ xu *a) e
bxvxb) xz*a

bxazxa)x (urxa*e*bxw)

I
* o *

b *x z % a).

Which implies that bx x xa and uxaxe*
bx v are inverses. Since that uxa,e,bxv €
FE then uxaxe*xb*xv € E . And because
that uxaxexbxv istheinverse of bxzxa and
itis idempotent then bxx*a isanidempotent
by Lemma B.1, which means that bxz xa is
an inverse of u x a x f x b* v.

(Generally, E = > E\ : A e I'LTisa
hypersemilattice and each Fy is a rectangular
band). Sincee €ex fxeand f € fxex f,
there exists F5 such that e, f € E5s. Thus for
anyt € E, and g € Eg, we have t x e x g,
txfrxg€ Eusp .

Therefore any idempotent 7 which is an
inverse of Exex 4 is also an inverse of Ex fx .
where £ and p are idempotents [[18]. Hence
we have

bxxxaC (bxzx*a)
x (uxaxfxbxwv)

* (b x z *x a)

uxaxfxbxv C(uxaxfxbxo)

(
* (b x  x a)

(u *xaxf *bxuv).
And

T €xxa*xfrxbxrz
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also

ax fxbCaxfrxbxaxz*ax*xifx*xb
Caxfxbxzxzxaxfxb
*x xax*x f xb

and thus

zxa*xfrxbxax Caxraxfxb
*x x a * f
* bx x % a
* fxb*xx

which impliesthat a x f x band x * a *
f * b % x are inverses. Similarly

a*xe*bC axexb*xx*xa
* frxb*xx*xaxexbd

and then

T xaxexbxxC zxaxe
*xb*xx % a
* [ xbxuz
*x a x e *x b *x .

Since that x is the inverse of a * e *
b then z isthe inverseof a x f x b. [

Proposition 3.3. Let S be a semihypergroup.
If s € S is an idempotent then s~! = s.

Proof. Since sisanidempotentthens € s
s .Thus

s *x s C sx s % 8
and then
S € sx s C s x 8§ % s.
Therefore, s~ ! = s. O
Proposition 3.4. If' S is an inverse semihy-

pergroup. Then¥ s € S : s » s tisan
idempotent.
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Proof. Since S is an inverse semihypergroup
then

1 1 1

x sand s7' € s~

s € §*%x 5§ *x 8 xS
and then
s % 51 C (s x st xs) x st

= (s * 51 % (s x s,
Letz € s % s~ ! whichimplies that
T € (s x s % (s % s
and thus
s x5t C (s x s % (s % s
O

Proposition 3.5. If S is an inverse semihy-
pergroup and a, b are idempotents in S then

bx(axb!xa
is an idempotent inverse of a x b .

Proof. Let a,b be idempotents. Let s be an

inverse of @ x« b Which means s = (a *
b)~L. Thus,
s € s % (a*b) * s, (1)

and

axb C (a*xb) *xsx*(axb). (2

multiplying (1) by b from the left

and a from the right , we have

bxsxa Cbx(s*xaxb)xsx*xa
Cbxsx(axa)*x(bxbd)

x 8 xa

= (bxsxa)x (a*b)

* (b % s % a)
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From (2) we have,

a *b C (a Db xs *x (a xb)
Ca* (b xb s
* (a x a) = b
= (a x b) x (b x s x a)
* (a * b).

Therefore, b * (a * b)~! % ais an idem-
potent inverse of @ % b . O

Theorem 3.6. If' S is an inverse semihyper-
group then its idempotents commute.

Proof. Let a,b be idempotents. We prove
thata x b = b x a. Hence

(axb) ™t =bx(axb!xa

by Proposition B.3 and uniqueness of in-
verses. Thus (axb)~! is idempotent and thus

(a b =axb
as every idempotent is it self inverse (Proposi-
tion@; and the uniqueness. Similarly, b x a

is an idempotent. Therefore,

bxa Cbxax*xdbx*xa
Cbxaxa*xbx*xb*a

= (b x a) x (a xb x (b x a)

Analogously,

a*xbC axbxaxb
Caxbxbxaxax*xhb
= (a xb) x (b *xa)* (a*D).

Thus a « b and b x ¢ are inverses and then
a*xb=1">bx%a. O

Lemma 3.7. For any two elements x,y in an

inverse semihypergroup S : (zxy) ™t = y~'x
-1

x

E-ISSN: 2224-2880
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Proof. Since

1 1

T E T KT T XT,Y €YXY K<Y

and
= x_l*a:*x_l, y_l € y‘l*y*y_l.
Then we have

rxy C(zraxtxz)x(yrxy ' xy)

=zx(z lxx)x(yxy Hry

=xx(yxy ) x(@txa)xy
(since idempotents commute)

= (zxy)x (y~ " xa ) x (wxy).

Similarly,

y xa T Sy ey ry ) o (2T

1

Yxzxz™)

1 1

=yt x(yry ) x (@ wz) KT
1, (.1

=y *(z !

*xz) % (yxy N ka”
(since idempotents commute)
=@ e x(@xy)x(y T xaTh)
Which implies that (zxy )~' = y txz~ L
O

Proposition 3.8. All hypergroups are inverse
semihypergroups and an inverse semihyper-
group is a hypergroup if and only if it has a
unique idempotent.

Proof. 1t is obvious that all hypergroups are
inverse semihypergroups. Now we show the
other direction. Let S be an inverse semihy-
pergroup with a unique idempotent e. Then
by Proposition B.4 we have,

sxs t=e=s51xs.

Then
exs=(sks 1) *s.
And as s and s~ are inverses then

ses*s_l*s:e*s,
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which implies that s € exs and similarly s €
sxe. Let © € exs,thenwehave = € sxs™ !
s, and thus e x s C s« e and similarly we can
prove sxe C exs.Therefore exs = sxe. [

Lemma 3.9. Let S be an inverse semihyper-
group then,

o For each idempotent e and element s
there is an idempotent f such that e x
s Csxf.

» For each idempotent e and element s
there is an idempotent f such that s x
eC fxs

Proof. (1) Wemay put f = s7! xe % s.
Notice that f is an idempotent because
s€s*x s xsands €5 x5 % s
Then we have,

f=stlxexs

1*5

1

gs_l*e*s*s_

(since s € sx s~ %)

1

Qs_l*e*e*s*s_ * S

(since e is an idempotent)

C(strexs) (s trexs)

(since e and s x s~ ' commute)

= fxf.
Therefore, f is idempotent. Then

exsCex(sks xs

= (sxs Hxexs

(since e and s x 57!

=sx(stxexs)

=sx* f.

commute)

(2) is proved analogously. O

Lemma 3.10. Let S be an inverse semihy-
pergroup and let a,b € S then;

E-ISSN: 2224-2880 516

Nabilah Hani Abughazalah

o If there exists an idempotent f such
that a = bx f then a C a*a~ ' xb.

o If there exists an idempotent e such
that a = exb then a Cbxa ! *a.

Proof. We show (1). Leta = bx f
where f is an idempotent. Then
a=0bxf
Chxbtxb) *f
=b* fx (b7! % D)
(since idempotents commute)
Chbx frxfrxblxb
=bx f*x flablxb
(since every idemotent is it self inverse)
=bxf)*x(bxf) b xb
(by Lemma B77)

—axa ! xb.
We show similarly (2). Let a = exb . Then

a=e x b

Cex (bxb! %)
=bxb ) xexb

(since idempotents commute)
Chxb ) xexexb
=bxbHxelxexd

(since every idemotent is it self inverse)
=b* (e x b)) x (e x D)

(by Lemma B77)

1*@.

=bxa
O

Definition 3.11. Let (S,0) and (T,*) be
two semihypersemigroups. A map ¢ : S —
T is called a homomorphism if

Vi,y € S:(w o y) C ¢(x) x o(y).
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We call ¢ a strong homomorphism if

Ve, y € S:d(z o y) o(z) * d(y).

We call ¢ isomorphism if ¢ is one-to-one
onto strong homomorphism and denoted by
S=T.

Example 3.12. Let S = {a,b,c} and T =
{1,2, 3} be two semihypergroups with the fol-
lowing hyperoperation tables:

o a b C

a a {a,b,c} c

b | {a,b,c} b {a,b,c}
c c {a,b,c} c

Table 4: Hyperoperation o on S

* 1 2 3
1| {1,3} | {1,2,3} 3
2| {1,2,3} 2 {1,2,3}
3 3 {1,2,3} 3

Table 5: Hyperoperation x on T’

Let ¢ : S — T be a mapping defined
by ¢(a) =1, ¢(b) =2, ¢(c) = 3. Thus ¢ is
a homomorphism but not a strong homomor-
phism (Table H and (Table [5).

Lemma 3.13. Let ¢ : S — T be a homomor-

phism between two inverse semihypergroups
(S,0) and (T, *). Then

s p(s) =p(s)"! Vs e S.

e If e is an idempotent then ¢(e) is an
idempotent.

 If ¢ is a strong homomorphism and
¢(s) is an idempotent then there is an
idempotent e such that ¢(s) C ¢(e).

» Im¢ is an inverse subsemihypergroup of
T.
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» If'U is an inverse subsemihypergroup of
T then ¢~(U) is an inverse subsemi-

hypergroup of S.

Proof. (1) Since s € sos losands™! €

s 'osos™! Then
¢(s) C (s o 5" o s)
C d(s) x o(s™) * ¢(s),
and
p(s)t C p(st o s o sh

N 1N

$(s7) * (s) x o(s7h).

Thus ¢(s)~t = ¢(s71).
(2)Since e € e o ethen ¢(e) C ¢(e o

e) C oe)  ¢(e).

(3) Since ¢(s) is an idempotent then

¢(s) C ¢(s) * ¢(s)

= ¢(s)"! * ¢(s) (from Proposition B.3)
$(s71) * ¢(s)
= (s o s)

(4) Since ¢ is a semihypergroup homomor-
phism, Im ¢ is a subsemihypergroup of 7.
By (1), Im ¢ is closed under inverses.

(5) Obvious. O

4 conclusion
Inverse semihypergroup is a new direction in
the field of hyperstructures. The fine general-
ization of hypergroups is further organized by
inverse semihypergroups. Although several
hypergroup principle theorems have been ef-
fectively exported to inverse semihypergroup
theory, there is little evidence of the contribu-
tion of hypersemillatice theory.

The study presented in this paper is an
initial step in the theoretical investigation
of inverse semihypergroups. We will be
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studying in the future the ability of describ-
ing inverse semihypergroup in term of their
hypersemilattice of idempotents. Also an
orthodox inverse semihypergroup is a rich
new area of research. A simple question can
be asked, can we generalize the theorems
of band semigroups and rectangular band
semigroups, to band semihypergroups and
rectangular band semihypergroups?
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